Strongly 1-bounded Von Neumann Algebras

نویسنده

  • KENLEY JUNG
چکیده

Suppose F is a finite set of selfadjoint elements in a tracial von Neumann algebra M . For α > 0, F is α-bounded if Pα(F ) < ∞ where Pα is the α-packing entropy of F introduced in [7]. We say that M is strongly 1-bounded if M has a 1-bounded finite set of selfadjoint generators F such that there exists an x ∈ F with χ(x) > −∞. It is shown that if M is strongly 1-bounded, then any finite set of selfadjoint generators G for M is 1-bounded and δ0(G) ≤ 1; consequently, a strongly 1-bounded von Neumann algebra is not isomorphic to an interpolated free group factor and δ0 is an invariant for these algebras. Examples of strongly 1-bounded von Neumann algebras include those which have propertyΓ, have Cartan subalgebras, are non-prime, or the group von Neumann algebras of SLn(Z), n ≥ 3. If M and N are strongly 1-bounded and M ∩N = D is diffuse, then the von Neumann algebra generated by M and N is strongly 1-bounded. In particular, a free product of two strongly 1-bounded von Neumann algebras with amalgamation over a common, diffuse von Neumann subalgebra is strongly 1-bounded. It is also shown that the normalizer of a strongly 1-bounded von Neumann algebra generates a von Neumann algebra with the property that any finite set of selfadjoint generators for the von Neumann algebra is 1-bounded.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Strong Topological Regularity and Weak Regularity of Banach Algebras

In this article we study two different generalizations of von Neumann regularity, namely strong topological regularity and weak regularity, in the Banach algebra context. We show that both are hereditary properties and under certain assumptions, weak regularity implies strong topological regularity. Then we consider strong topological regularity of certain concrete algebras. Moreover we obtain ...

متن کامل

Various topological forms of Von Neumann regularity in Banach algebras

We study topological von Neumann regularity and principal von Neumann regularity of Banach algebras. Our main objective is comparing these two types of Banach algebras and some other known Banach algebras with one another. In particular, we show that the class of topologically von Neumann regular Banach algebras contains all $C^*$-algebras, group algebras of compact abelian groups and ...

متن کامل

Nonlinear $*$-Lie higher derivations on factor von Neumann algebras

Let $mathcal M$ be a factor von Neumann algebra. It is shown that every nonlinear $*$-Lie higher derivation$D={phi_{n}}_{ninmathbb{N}}$ on $mathcal M$ is additive. In particular, if $mathcal M$ is infinite type $I$factor, a concrete characterization of $D$ is given.

متن کامل

Left Jordan derivations on Banach algebras

In this paper we characterize the left Jordan derivations on Banach algebras. Also, it is shown that every bounded linear map $d:mathcal Ato mathcal M$ from a von Neumann algebra $mathcal A$ into a Banach $mathcal A-$module $mathcal M$ with property that $d(p^2)=2pd(p)$ for every projection $p$ in $mathcal A$ is a left Jordan derivation.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008